

Design Example Report

Title 27 W Power Supply Using TOP266EG				
Specification	90 VAC – 265 VAC Input; 5 V, 2.5 A and 14.5 V, 1 A Outputs			
Application LCD Monitor				
Author	Applications Engineering Department			
Document Number	DER-235			
Date	January 22, 2010			
Revision	1.0			

Summary and Features

- Very low standby consumption
 - <100 mW Input power with 4 mA load on 5 V output
 - 90 mW at 240 VAC input
 - 95 mW at 265 VAC Input
- Very low no-load input power
 - No-load Input power of 60 mW at 230 VAC input
- High full-load efficiency
- Greater than 80.5% efficiency at 90 VAC / 60 Hz
- Less than 55°C plastic temperature of TOPSwitch device at 90 VAC / 60 Hz, 25°C room temperature
 - Easily meets industry thermal requirement of <90°C at 50°C ambient
- Greater than 6 dB margin on conducted EMI
- Hysteretic output overvoltage protection
- Hysteretic output short circuit protection
- Hysteretic thermal overload protection with large hysteresis

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

> Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

Table of Contents

1		duction	
2	Pow	er Supply Specification	4
3		ematic	
4	Circ	uit Description	6
	4.1	Input EMI Filtering and Rectification	6
	4.2	TOPSwitch-JX Primary	6
	4.3	Output Rectification	6
	4.4	Output Feedback	7
5	PCE	B Layout	8
6	Bill o	of Materials	9
7	Trar	sformer Specification	11
	7.1	Electrical Diagram	
	7.2	Electrical Specifications	11
	7.3	Materials	11
	7.4	Transformer Build Diagram	12
	7.5	Transformer Construction	
8	Trar	nsformer Design Spreadsheet	13
9	Perf	ormance Data	18
	9.1	Full Load Efficiency	
	9.2	Input Power with 2.6 mA, 3 mA and 4 mA Load at 5 V Output	19
	9.3	No-load Input Power	20
	9.4	Regulation	21
	9.4.	1 Load	21
	9.4.2	-	
	9.4.3	3 Cross Regulation	24
10		nermal Performance	
11	W	aveforms	
	11.1	Drain Voltage and Current, Normal Operation	
	11.2	Output Voltage Start-up Profile	
	11.3	Drain Voltage and Current Start-up Profile	
	11.4	Load Transient Response (75% to 100% Load Step)	
		Output Overvoltage Protection	
		Output Ripple Measurements	
		5.1 Ripple Measurement Technique	
	11.6		
12		onducted EMI	
13	R R	evision History	34

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This document is an engineering report describing a 5 V / 2.5 A, 14.5 V / 1 A power supply utilizing a TOP266EG. The TOP266EG is part of the TOPSwitch-JX IC family from Power Integrations.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

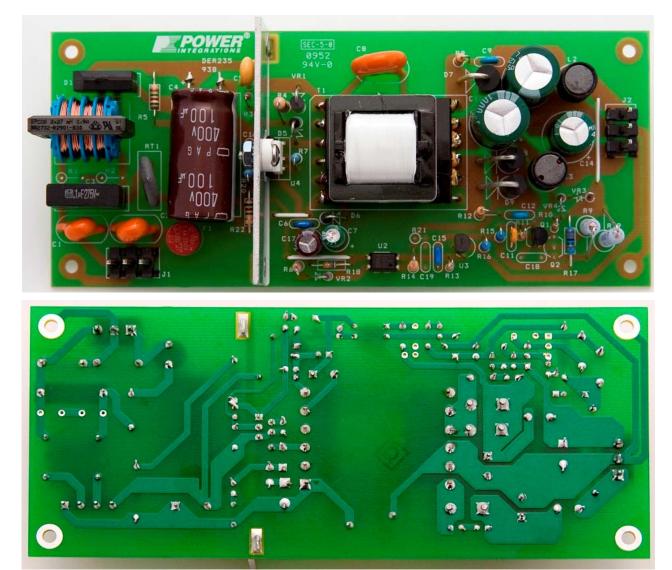


Figure 1 – Populated Board.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Тур	Мах	Units	Comment
Input Voltage Frequency	V _{IN} f _{LINE}	90 47	50/60	265 64	VAC Hz	3 Wire – with P.E.
No-load Input Power (264 VAC)				<0.1	W	With 4mA load on 5V output
Output Output Voltage 1	V _{OUT1}	4.75	5	5.25	V	± 5%
Output Ripple Voltage 1	V _{RIPPLE1}			50	mV	
Output Current 1 Output Voltage 2	Ι _{ουτ1} V _{ουτ2}	0 12.3	14.5	2.5 16.7	A V	± 15%
Output Ripple Voltage 2	V _{RIPPLE2}			500	mV	20 MHz bandwidth
Output Current 2	I _{OUT2}	0		1	А	
Total Output Power Continuous Output Power	Ρουτ			27	W	
Efficiency Full Load (90VAC)	η	80			%	Measured at P _{OUT} 25 °C
Environmental						
Conducted EMI		Meets CISPR22B / EN55022B				
Safety		Designed to meet IEC950, UL1950 Class II				
Ambient Temperature	T _{AMB}	0		50	°C	Free convection, sea level

3 Schematic

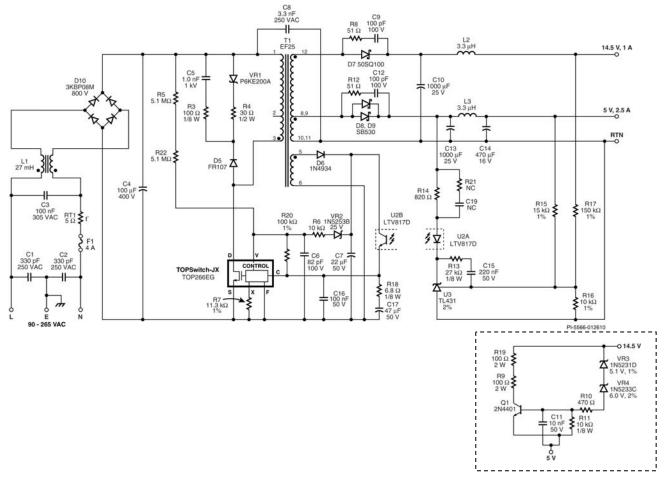


Figure 2 – Schematic (including optional active pre-load to improve output cross regulation).

4 Circuit Description

The power supply employs a TOPSwitch-JX TOP266EG device (U1) with an integrated high voltage MOSFET and a controller in a flyback configuration.

4.1 Input EMI Filtering and Rectification

Capacitors C1, C2 and C3 together with common mode choke L1 forms an EMI filter that attenuates both common mode and differential mode conducted EMI. Diode Bridge D10 rectifies the AC input. A 3 A rated bridge was selected for D10 to improve low line, full load efficiency.

4.2 TOPSwitch-JX Primary

The TOP266EG device (U1) integrates an oscillator, a switch controller, startup and protection circuitry, and a power MOSFET, all on one monolithic IC. One side of the power transformer (T1) primary winding is connected to the positive side of the bulk capacitors C4, and the other side are connected to the DRAIN pin of U1. When the MOSFET turns off, the leakage inductance of the transformer induces a voltage spike on the drain node. The amplitude of that spike is limited by a clamp network that consists of D5, R4, VR1, R3 and C5. The majority of the dissipation occurs in VR1 and R4 with the series combination of R3 and C5 (in parallel with R4 and VR1) share some of the dissipation between the two networks. This arrangement was selected to reduce clamp losses under light and no-load conditions.

The line under-undervoltage threshold of 95 V_{DC} is determined by the current supplied via resistors R5, R22 and R20 and the V pin current threshold of 25 μ A. The addition of R20 reduces the dissipation of R5 and R22, improving no-load input power. This also effectively disabled the line OV shutdown (threshold is >800 V_{DC}) but the design easily passed differential surge levels above the 1 kV. The value of R20 was selected to ensure that the V pin current is above the UV threshold when the CONTROL pin is at 4.8 V during auto-restart. This ensures correct auto-restart timing. Resistor R6 and Zener diode VR2 are used for output overvoltage protection, for example during an open loop fault, triggering non-latching shut-down when the V pin current exceeds 112 μ A.

Note for this power level the TOP265 is also suitable providing a slight reduction in efficiency and rise in device temperature is acceptable.

4.3 Output Rectification

Diodes D8 and D9 rectify the 5 V secondary winding output of T1. The output voltage is filtered by C13, L3, and C14. Resistor R12 and capacitor C12 snubs the voltage spike caused by the commutation of D8 and D9. Diode D7 rectifies the 14.5 V secondary winding output of T1. The output voltage is filtered by C10 and L2. Resistor R8 and capacitor C9 absorb the noise caused by the commutation of D7. Dual axial diodes were used for D8 and D9 for both low cost but maintaining high efficiency compared to a single TO220 higher current diode with an external heatsink. The two axial diodes are co-

located and share the same copper area on the cathode side to ensure thermal tracking. The resultant current sharing was excellent as can be seen in the thermal image where the diodes are operating at the same temperature indicting similar diode currents.

A low voltage rating (30 V) was achievable for D8 and D9 due to the flexibility of a higher turns ratio (higher VOR) due to the 725 V rating of the MOSFET in U1. This further improved efficiency as the V_F of a 30 V diode is lower than the >50 V diode typically required for designs where the MOSFET rating is 600 V or 650 V.

4.4 Output Feedback

The output voltage regulation is set by voltage dividers formed by R15, R17 and R16 and the shunt regulator U3. Resistor R13 and capacitor are compensation elements around error amplifier U3. A high CTR opto-coupler was selected for U2 to minimize the secondary side feedback (opto) current and thereby reduce no-load and standby input power. To reduce the feedback losses on the primary side the number of bias winding turns on the transformer and the value of C7 was optimized to give a minimum voltage of 9 V at high line under standby loading conditions (voltage monitored across C7 with an oscilloscope to ensure lowest voltage \geq 8.5 V).

An active pre-load (shunt-regulator) was included to prevent an unloaded 14.5 V output rising outside of specification while the 5 V is loaded. This circuit is formed by VR3, VR4, R10, R11, C11, Q1, R9 and R19. When the difference between the 5 V and 14.5 V outputs exceeds the voltage defined by VR3, VR4 and the V_{BE} of Q1, Q1 is biased on and current is shunted from the 14.5 V output into the 5 V output via R9 and R19. If the 14.5 V output always has a minimum load then this circuit can be omitted.

5 PCB Layout

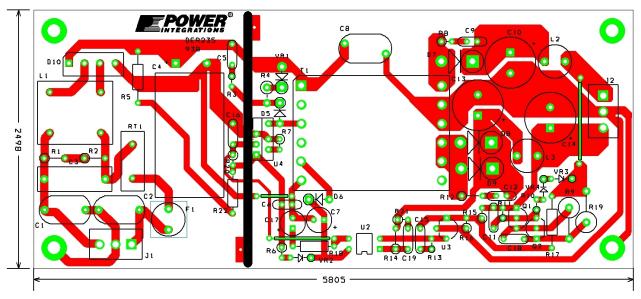


Figure 3 – PCB Layout.

6 Bill of Materials

Item Qty Des		Ref	Description	Mfr Dart Number	Manufacturer	
				Mfg Part Number		
1	2	C1 C2 C3	330 pF, 250 VAC, Film, X1Y1	CD70-B2GA221KYAS F1772-410-2000	TDK	
2	1		100 nF, 275VAC, Film, X2		Vishay/Roederstein Nippon Chemi-Con	
3	1	C4	100 μF, 400 V, Electrolytic, Low ESR, (16 x 30)	EPAG401ELL101ML30S		
4	1	C5	0.001 μF, 1 kV, Disc Ceramic	562R10TSD10	Vishay	
5	1	C6	82 pF, 100 V, Ceramic, COG	B37979N1820J000	Epcos	
6	1	C7	22 μ F, 50 V, Electrolytic, Very Low ESR, 340 m Ω , (5 x 11)	EKZE500ELL220ME11D	Nippon Chemi-Con	
7	1	C7 C8	3.3 nF, Ceramic, Y1	440LD33-R	Vishay	
8	2	C9 C12	100 pF, 100 V, Ceramic, COG	B37979N1101J000	Epcos	
0	2	C10	1000 μ F, 25 V, Electrolytic, Very Low ESR, 21 m Ω ,	B37373111013000		
9	2	C10 C13	(12.5 x 20)	EKZE250ELL102MK20S	Nippon Chemi-Con	
10	1	C11	100 nF, 50 V, Ceramic, Z5U, .2Lead Space	C317C104M5U5TA	Kemet	
			470 μF, 16 V, Electrolytic, Very Low ESR, 53 mΩ,			
11	1	C14	(10 x 12.5)	EKZE160ELL471MJC5S	Nippon Chemi-Con	
12	1	C15	220 nF, 50 V, Ceramic, X7R	B37987F5224K000	Epcos	
13	1	C16	100 nF, 50 V, Ceramic, X7R	RPER71H104K2K1A03B	Murata	
14	1	C17	47 μF, 50 V, Electrolytic, Gen. Purpose, (6.3 x 11)	EKMG500ELL470MF11D	Nippon Chemi-Con	
15	1	C19	Not installed			
16	1	D5	1000 V, 1 A, Fast Recovery Diode, DO-41	FR107-T-F	Diodes Inc.	
17	1	D6	100 V, 1 A, Fast Recovery, 200 ns, DO-41	1N4934	Vishay	
18	1	D7	100 V, 5 A, Schottky, DO-201AR	VS-50SQ100	Vishay	
19	2	D8 D9	30 V, 5 A, Schottky, DO-201AD	SB530	Vishay	
20	1	D10	800 V, 3 A, Bridge Rectifier, Glass Passivated	3KBP08M-E4/51	Vishay	
21	1	F1	4 A, 250V, Slow, TR5	3721400041	Wickman	
22	2	J1 J2	3 Position (1 x 3) header, 0.156 pitch, Vertical	26-48-1031	Molex	
23	1	L1	27 mH, 0.9 A, Common Mode Choke	B82732-R2901-B30	Epcos	
24	2	L2 L3	3.3 μH, 5.7 A	ELC08D3R3E	Panasonic	
		MTG				
25	4	HOLE	Mounting Hole No 4			
					Fairchild	
26	1	Q1	NPN, Small Signal BJT, 40 V, 0.6 A, TO-92	2N4401BU	Semiconductor	
27	1	R3	100 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-100R	Yageo	
28	1	R4	30 Ω, 5%, 1/2 W, Carbon Film	CFR-50JB-30R	Yageo	
29	2	R5 R22	5.1 MΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-5M1	Yageo	
30	1	R6	10 kΩ, 5%, 1/4 W, Carbon Film	CFR-25JB-10K	Yageo	
31	1	R7	11.3 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-11K3	Yageo	
32	2	R8 R12	51 Ω, 5%, 1/4 W, Carbon Film	CFR-25JB-51R	Yageo	
33	2	R9 R19	100 Ω, 5%, 2 W, Metal Oxide	RSF200JB-100R	Yageo	
34	1	R10	470 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-470R	Yageo	
35	1	R11	10 kΩ, 5%, 1/8 W, Carbon Film	CFR-12JB-10K	Yageo	
36	1	R13	27 kΩ, 5%, 1/8 W, Carbon Film	CFR-12JB-27K	Yageo	
37	1	R14	820 Ω, 5%, 1/4 W, Carbon Film	CFR-25JB-820R	Yageo	
38	1	R15	15 kΩ, 1%, 1/4 W, Metal Film	MFR-25FBF-15K0	Yageo	
39	1	R16	10 kΩ, 1%, 1/4 W, Metal Film	ERO-S2PHF1002	Panasonic	
40	1	R17	150 k Ω , 1%, 1/4 W, Metal Film	MFR-25FBF-150K	Yageo	
41	1	R18	6.8 Ω, 5%, 1/8 W, Carbon Film	CFR-12JB-6R8	Yageo	
42	1	R20	100 k, 1%, 1/4 W, Metal Film	MFR-25FBF-100K	Yageo	
43	1	R21	Not installed			
44	1	RT1	NTC Thermistor, 5 Ohms, 2.8 A	CL160	Thermometrics	
45	1	T1	Bobbin, EF25, Horizontal, 12 pins	YC2504	Ying Chin	
46	2	TERMI NAL EYELE T	Terminal, Eyelet, Tin Plated Brass, Zierick PN 190	190	Zierick	
40	2	I	reminal, Eyelet, Thi Flateu Diass, Zlenck PN 190	190		

-					
47	1	U1	TOPSwitch-JX, TOP266EG, eSIP-7C	TOP266EG	Power Integrations
48	1	U2	Opto coupler, 35 V, CTR 300-600%, 4-DIP	LTV-817D	Liteon
49	1	U3	2.495 V Shunt Regulator IC, 2%, 0 to 70C, TO-92	TL431CLPG	On Semiconductor
50	1	VR1	200 V, 5 W, 5%, TVS, DO204AC (DO-15)	P6KE200ARLG	OnSemi
51	1	VR2	25 V, 5%, 500 mW, DO-35	1N5253B	Microsemi
52	1	VR3	5.1 V, 1%, 500 mW, DO-35	1N5231D	Microsemi
53	1	VR4	6.0 V, 2%, 500 mW, DO-35	1N5233C	Microsemi

7 Transformer Specification

7.1 Electrical Diagram

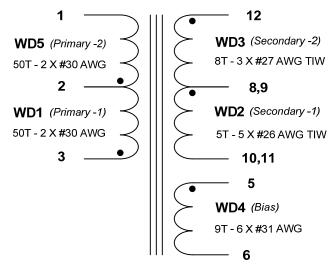


Figure 4 – Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1-6 to pins 7-12	3000 VAC
Primary Inductance	Pins 1-3, all other windings open, measured at 100 kHz, 0.4 VRMS	$677~\mu H, \pm 5\%$
Resonant Frequency	Pins 1-3, all other windings open	400 kHz (Min.)
Primary Leakage Inductance	Pins 1-3, with pins 8, 9, 10, 11, 12 shorted, measured at 100 kHz, 0.4 VRMS	25 μH (Max.)

7.3 Materials

Item	Description
[1]	Core: EF25, NC-2H (Nicera) or equivalent, gapped for ALG of 57 nH/t ²
[2]	Bobbin: Generic, 6 primary + 6 seconday
[3]	Barrier tape: Polyester film (1 mil base thickness), 15.60 mm wide
[4]	Varnish
[5]	Magnet wire: #30 AWG, solderable double coated
[6]	Magnet wire: #31 AWG, solderable double coated
[7]	Triple Insulated Wire: #26 AWG
[8]	Triple Insulated Wire: #27 AWG

7.4 Transformer Build Diagram

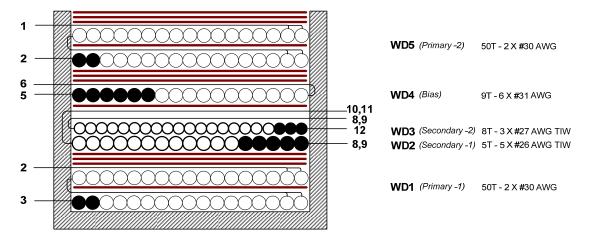


Figure 5 – Transformer Build Diagram.

7.5 Transformer Construction

WD1 1 st Half of Primary	Start on pin(s) 3, wind 25 turns (x 2 filar) of item [5] in 1 layer(s) from left to right. Return the wire to left side. Use 1 layer of tape item [3]. Wind 25 turns (x 2 filar) of item [5] in 1 layer(s) from left to right. Return the wire to left side and finish this winding on pin(s) 2.
Basic Insulation	Use 3 layer of tape, item [3], for insulation.
WD2 Secondary Winding 5 V	Start on pins 8 and 9 wind 5 turns (x 5 filar) of item [7] from right to left. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Set the wire temporarily at primary side.
WD3 Secondary Winding 14.5 V	Start on pin 12 wind 8 turns (x 3 filar) of item [8] from right to left. Wind in same rotational direction as primary winding. Spread the winding evenly across entire bobbin. Bring to wire back to secondary side and finish at pins 8 and 9. Bring the wire for WD2 back to secondary side and finish at pins 10 and 11.
Basic Insulation	Use 1 layer of tape, item [3], for insulation.
WD4 Bias	Start on pin(s) 5 and wind 9 turns (x 6 filar) of item [6]. Spread the winding evenly across entire bobbin. Finish this winding on pin(s) 6.
Basic Insulation	Use 3 layers of item [4] for basic insulation.
WD6 2 nd Half of Primary	Start on pin(s) 2, wind 25 turns (x 2 filar) of item [5] in 1 layer(s) from left to right. Return the wire to left side. Use 1 layer of tape item [3]. Wind 25 turns (x 2 filar) of item [5] in 1 layer(s) from left to right. Return the wire to left side and finish this winding on pin(s) 1.
Outer Wrap	Wrap windings with 3 layers of tape [item [4].
Core Preparation	Prepare the core to get the correct primary inductance.
Final Assembly	Assemble and secure core halves with tape.
Varnishing	Dip varnish the transformer in item [4].

8 Transformer Design Spreadsheet

ACDC_TOPSwitchJX_120709; Rev.1.1; Copyright Power Integrations 2009	INPUT	INFO	OUTPUT	UNIT	TOP_JX_120709: TOPSwitch- JX Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIABI	LES		•		
VACMIN	90			Volts	Minimum AC Input Voltage
VACMAX	265			Volts	Maximum AC Input Voltage
fL	50			Hertz	AC Mains Frequency
VO	5.00			Volts	Output Voltage (main)
PO_AVG	27.00			Watts	Average Output Power
PO_PEAK			27.00	Watts	Peak Output Power
Heatsink Type	External		External		Heatsink Type
Enclosure	Open Frame				Open Frame enclosure assume sufficienct airflow while adapter means a sealed enclosure.
n	0.80			%/100	Efficiency Estimate
Z	0.50				Loss Allocation Factor
VB	9	Info		Volts	Ensure proper operation at no load. Bridge Rectifier Conduction
tC	3.00			ms	Time Estimate
CIN	100.0		100	uFarads	Input Filter Capacitor
ENTER TOPSWITCH-JX VARIA	BLES				
TOPSwitch-JX	TOP266E			Universal / Peak	115 Doubled/230V
Chosen Device		TOP266E	Power Out	86 W / 86 W	119W
кі	0.55				External Ilimit reduction factor (KI=1.0 for default ILIMIT, KI <1.0 for lower ILIMIT)
ILIMITMIN_EXT			1.304	Amps	Use 1% resistor in setting external ILIMIT
ILIMITMAX_EXT			1.500	Amps	Use 1% resistor in setting external ILIMIT
Frequency (F)=132kHz, (H)=66kHz	F		F		Select 'H' for Half frequency - 66kHz, or 'F' for Full frequency - 132kHz
fS			132000	Hertz	TOPSwitch-JX Switching Frequency: Choose between 132 kHz and 66 kHz
fSmin			119000	Hertz	TOPSwitch-JX Minimum Switching Frequency
fSmax			145000	Hertz	TOPSwitch-JX Maximum Switching Frequency
High Line Operating Mode			FF		Full Frequency, Jitter enabled
VOR	110.00			Volts	Reflected Output Voltage
VDS			10	Volts	TOPSwitch on-state Drain to Source Voltage
VD	0.50			Volts	Output Winding Diode Forward Voltage Drop
VDB	0.70			Volts	Bias Winding Diode Forward Voltage Drop Ripple to Peak Current Ratio
KP	0.72				(0.3 < KRP < 1.0 : 1.0< KDP<6.0)

PROTECTION FEATURES					
LINE SENSING					V pin functionality
					Minimum DC Bus Voltage at which the power supply will
VUV_STARTUP			101	Volts	start-up
					Typical DC Bus Voltage at which power supply will shut-
VOV_SHUTDOWN			490	Volts	down (Max)
					Use two standard, 2.2 M-Ohm, 5% resistors in series for line
RLS			4.4	M-ohms	sense functionality.
OUTPUT OVERVOLTAGE					· · · · · · · · · · · · · · · · · · ·
					Zener Diode rated voltage for
VZ			16	Volts	Output Overvoltage shutdown protection
V2			10	Volto	Output OVP resistor. For
RZ			5.1	k-ohms	latching shutdown use 20 ohm resistor instead
OVERLOAD POWER LIMITING					X pin functionality
					Enter the desired margin to
					current limit at VMAX. A value
Overload Current Ratio at					of 1.2 indicates that the current limit should be 20% higher than
VMAX			1.2		peak primary current at VMAX
					Your margin to current limit at low line is high. Reduce KI to
Overload Current Ratio at VMIN		Info	1.38		0.48 (if possible).
ILIMIT_EXT_VMIN			0.93	А	Peak primary Current at VMIN
ILIMIT_EXT_VMAX			0.81	А	Peak Primary Current at VMAX
					Current limit/Power Limiting
RIL			11.38	k-ohms	resistor. Resistor not required. Use RIL
RPL			N/A	M-ohms	resistor only
ENTER TRANSFORMER CORE	CONSTRUC	TION VARIABLES			
Core Type	EF25		EF25		Core Type
Core		EF25		P/N:	PC40EF25-Z
Bobbin		EF25 BOBBIN		P/N:	*
					Core Effective Cross Sectional
AE		-	0.518	cm^2	Area
LE			5.78	cm	Core Effective Path Length Ungapped Core Effective
AL			2000	nH/T^2	Inductance
BW			15.6	mm	Bobbin Physical Winding Width
					Safety Margin Width (Half the
Μ	0.00			mm	Primary to Secondary Creepage Distance)
L	2.00				Number of Primary Layers
NS	5		5		Number of Secondary Turns
DC INPUT VOLTAGE PARAMET	TERS			•	
VMIN			107	Volts	Minimum DC Input Voltage
VMAX			375	Volts	Maximum DC Input Voltage
		:De	510	1010	
CURRENT WAVEFORM SHAPE		:K3			Maximum Duty Cycle
DMAX			0.53		(calculated at PO_PEAK)
					Average Primary Current (calculated at average output
	1		0.32	Amps	(

	I	ŀ		Dook Drimony Current
				Peak Primary Current (calculated at Peak output
IP		0.93	Amps	power)
IR		0.67	Amps	Primary Ripple Current (calculated at average output power)
		0.07	Апрз	Primary RMS Current
IRMS		0.45	Amps	(calculated at average output power)
TRANSFORMER PRIMARY DES		IS I		· · · /
LP		677	uHenries	Primary Inductance
				Tolerance of Primary
LP Tolerance	5	5		Inductance Primary Winding Number of
NP		100		Turns
NB		9		Bias Winding Number of Turns
ALG		68	nH/T^2	Gapped Core Effective Inductance
BM		1211	Gauss	Maximum Flux Density at PO, VMIN (BM<3000)
BP		2059	Gauss	Peak Flux Density (BP<4200) at ILIMITMAX and LP_MAX. Note: Recommended values for adapters and external power supplies <=3600 Gauss
				AC Flux Density for Core Loss
BAC		436	Gauss	Curves (0.5 X Peak to Peak) Relative Permeability of
ur		1776		Ungapped Core
LG		0.93	mm	Gap Length (Lg > 0.1 mm)
BWE		31.2	mm	Effective Bobbin Width Maximum Primary Wire
OD		0.31	mm	Diameter including insulation
INS		0.05	mm	Estimated Total Insulation Thickness (= 2 * film thickness)
DIA		0.26	mm	Bare conductor diameter
AWG		30	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)
СМ		102	Cmils	Bare conductor effective area in circular mils
СМА		224	Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)
Primary Current Density (J)		8.97	Amps/mm^2	Primary Winding Current density (3.8 < J < 9.75)
TRANSFORMER SECONDARY	DESIGN PARAM	TERS (SINGLE OUTPUT I	EQUIVALENT)	
Lumped parameters				
ISP		18.54	Amps	Peak Secondary Current
ISRMS		8.54	Amps	Secondary RMS Current
IO_PEAK		5.40	Amps	Secondary Peak Output Current
10		5.40	Amps	Average Power Supply Output Current
IRIPPLE		6.62	Amps	Output Capacitor RMS Ripple Current
CMS		1708	Cmils	Secondary Bare Conductor minimum circular mils
				Secondary Wire Gauge (Rounded up to next larger
AWGS		17	AWG	standard AWG value) Secondary Minimum Bare
DIAS		1.15	mm	Conductor Diameter

				Secondary Maximum Outside Diameter for Triple Insulated
ODS		3.12	mm	Wire
INSS		0.98	mm	Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS PAR	AMETERS			
				Maximum Drain Voltage
VDRAIN		593	Volts	Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peal
PIVS		24	Volts	Inverse Voltage Bias Rectifier Maximum Peak
PIVB		42	Volts	Inverse Voltage
TRANSFORMER SECON	DARY DESIGN PARAMETER	S (MULTIPLE OUTPUT	S)	
1st output				- 1
VO1		5	Volts	Output Voltage
IO1_AVG	2.50	2.50	Amps	Average DC Output Current
PO1_AVG		12.50	Watts	Average Output Power
VD1		0.5	Volts	Output Diode Forward Voltage Drop
NS1		5.00		Output Winding Number of Turns
ISRMS1		3.955	Amps	Output Winding RMS Current
IRIPPLE1		3.06	Amps	Output Capacitor RMS Ripple Current
PIVS1		24	Volts	Output Rectifier Maximum Pea Inverse Voltage
CMS1		791	Cmils	Output Winding Bare Conducto minimum circular mils
AWGS1		21	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS1		0.73	mm	Minimum Bare Conductor Diameter
ODS1		3.12	mm	Maximum Outside Diameter for Triple Insulated Wire
2nd output				
VO2	14.50		Volts	Output Voltage
IO2_AVG	1.00		Amps	Average DC Output Current
PO2_AVG		14.50	Watts	Average Output Power
VD2	0.50	0.5	Volts	Output Diode Forward Voltage Drop
NS2		13.64		Output Winding Number of Turns
ISRMS2		1.582	Amps	Output Winding RMS Current
IRIPPLE2		1.23	Amps	Output Capacitor RMS Ripple Current
PIVS2		66	Volts	Output Rectifier Maximum Pea Inverse Voltage
CMS2		316	Cmils	Output Winding Bare Conducto minimum circular mils
AWGS2		25	AWG	Wire Gauge (Rounded up to next larger standard AWG value)
DIAS2		0.46	mm	Minimum Bare Conductor Diameter
ODS2		1.14	mm	Maximum Outside Diameter for Triple Insulated Wire

IO3_AVG		Amps	Average DC Output Current	
PO3_AVG	0.00	Watts	Average Output Power	
VD3	0.7	Volts	Output Diode Forward Voltage Drop	
NS3	0.64		Output Winding Number of Turns	
ISRMS3	0.000	Amps	Output Winding RMS Current	
IRIPPLE3	0.00	Amps	Output Capacitor RMS Ripple Current	
PIVS3	2	Volts	Output Rectifier Maximum Peak Inverse Voltage	
CMS3	0	Cmils	Output Winding Bare Conductor minimum circular mils	
AWGS3	N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)	
DIAS3	N/A	mm	Minimum Bare Conductor Diameter	
ODS3	N/A	mm	Maximum Outside Diameter for Triple Insulated Wire	
Total Continuous Output				
Power	27	Watts	Total Continuous Output Power	
Negative Output	N/A		If negative output exists enter Output number; eg: If VO2 is negative output, enter 2	

9 Performance Data

All measurements performed at room temperature. Unless otherwise specified, all testing performed with a line frequency of 50 Hz except for 90 VAC and 115 VAC where 60 Hz was used.

9.1 Full Load Efficiency

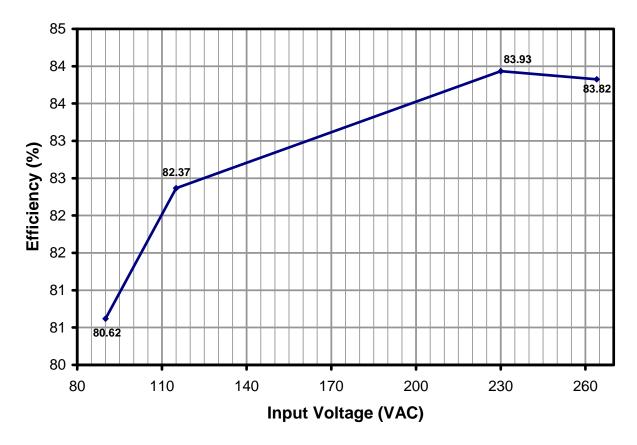


Figure 6 – Efficiency vs. Input Voltage, 60 Hz, Full Load, Room Temperature.

9.2 Input Power with 2.6 mA, 3 mA and 4 mA Load at 5 V Output

Measured with 14.5 V output unloaded.

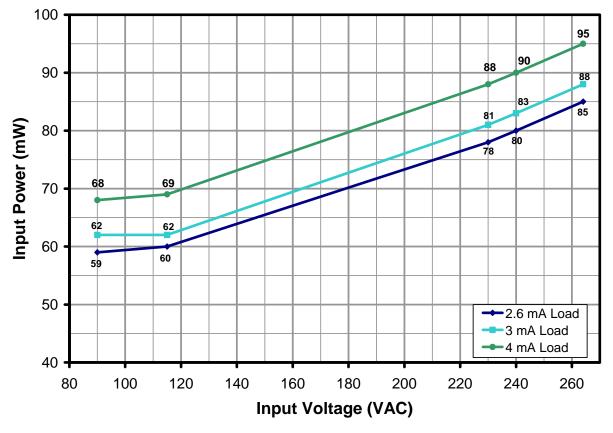


Figure 7 – Input Power with 2.6 mA, 3 mA and 4 mA. Load at 5 V. Output vs. Line Voltage and Temperature.

9.3 No-load Input Power

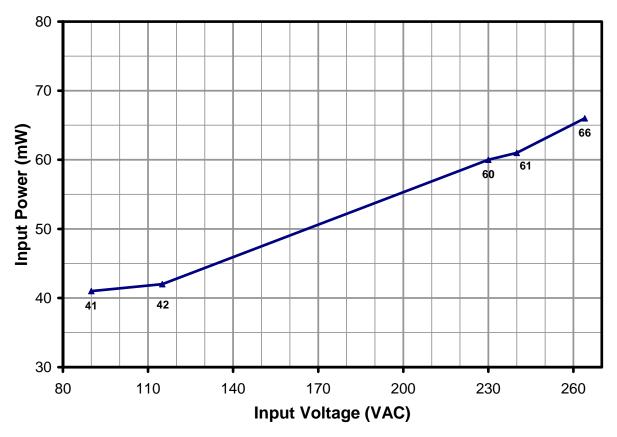


Figure 8 – No-load Input Power vs. Line Voltage.

9.4 Regulation

9.4.1 Load

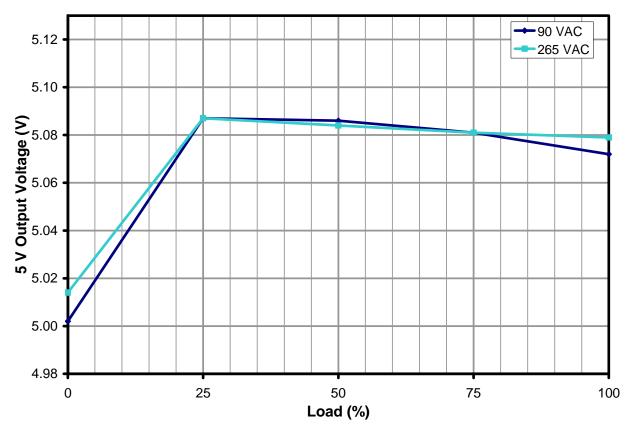


Figure 9 – 5 V Output Load Regulation, Room Temperature.

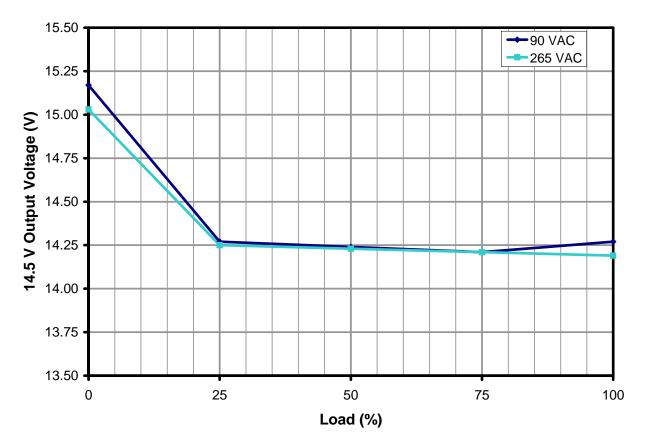


Figure 10 – 14.5 V Output Load Regulation, Room Temperature.

9.4.2 Line

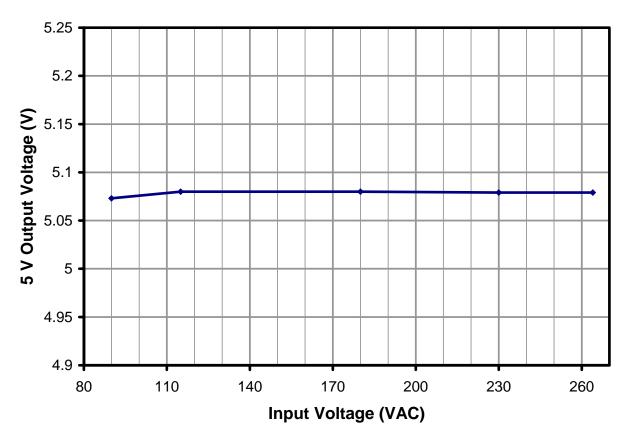


Figure 11 – 5 V Output Line Regulation, Room Temperature, Full Load.

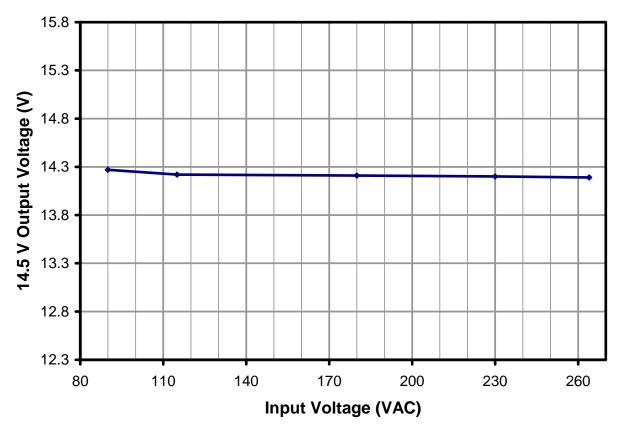
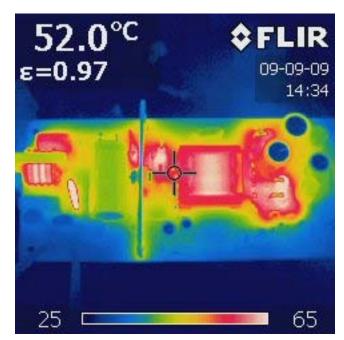


Figure 12 – 14.5 V Output Line Regulation, Room Temperature, Full Load.

9.4.3	Cross	Regulation
-------	-------	------------

	90 VAC		265 VAC		
	5 V OUT (V)	14.5 V OUT (V)	5 V OUT (V)	14.5 V OUT (V)	
14.5 V / 1 A, 5 V / 2.5 A	5.07	14.27	5.08	14.19	
14.5 V / 0 A, 5 V / 0 A	5.00	15.17	5.01	15.03	
14.5 V / 0.1 A, 5 V / 2.5 A	4.96	15.47	4.96	15.50	
14.5 V / 1 A, 5 V / 0.1 A	5.18	13.29	5.19	13.13	

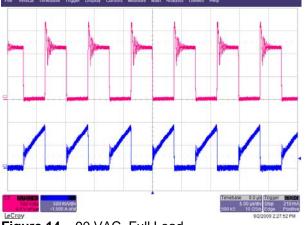


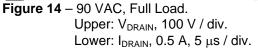
10 Thermal Performance

The unit was running for two hours to thermally stabilize prior to the measurement. The unit was loaded at maximum load of 27 W at room temperature on the bench open frame.

Note the tracking of the temperatures of D8 and D9 in bottom right hand corner of the thermal image indicating good current sharing.

ltem	Temperature (°C)	
nem	90 VAC / 60 Hz	
Ambient	25	
Common Mode Choke (L1)	61	
Bridge (D10)	60	
Transformer (T1) Core	56	
Transformer Winding (T1)	64	
PI Device (U1)	55	
Rectifier for 5V (D8)	67	
Rectifier for 14.5V (D7)	59	
Thermistor (RT1)	75	



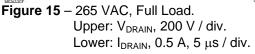
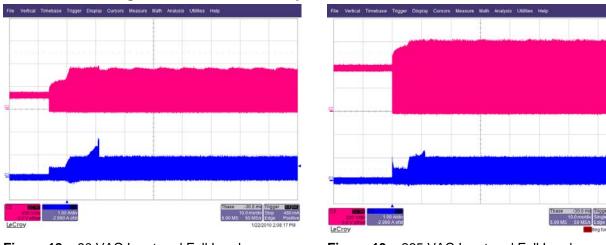

Figure 13 – Infra-Red Image of the Component Side after Two Hours Operation Full Load, 90 VAC, 60 Hz and Room Temperature Open Frame.

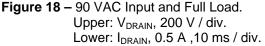
11 Waveforms

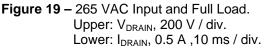
11.1 Drain Voltage and Current, Normal Operation

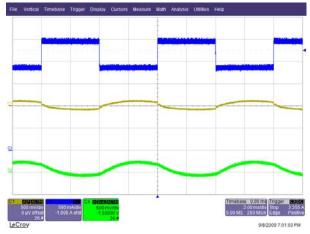
11.2 Output Voltage Start-up Profile

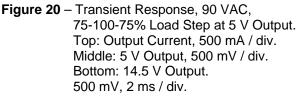
Figure 16 – Start-up Profile, 90 VAC. Upper: $V_{5 V}$, 2 V / div. Lower: $V_{14.5 V}$, 5 V, 20 ms / div.




Figure 17 – Start-up Profile, 265 VAC. Upper: $V_{5 V}$, 2 V / div. Lower: $V_{14.5 V}$, 5 V, 20 ms / div.


11.3 Drain Voltage and Current Start-up Profile



11.4 Load Transient Response (75% to 100% Load Step)

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.

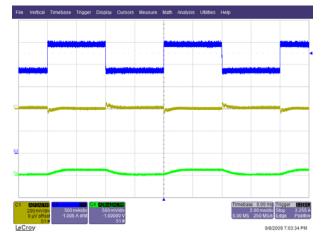


Figure 21 – Transient Response, 265 VAC, 75-100-75% Load Step at 5 V Output. Top: Output Current, 500 mA / div. Middle: 5 V Output, 200 mV / div. Bottom: 14.5 V Output. 500 mV, 2 ms / div.

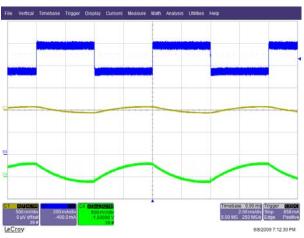


Figure 22 – Transient Response, 90 VAC, 75-100-75% Load Step at 14.5 V Output. Top: Output Current, 200 mA / div. Middle: 5 V Output, 500 mV / div.

Bottom: 14.5 V Output, 500 mV, 2 ms / div.

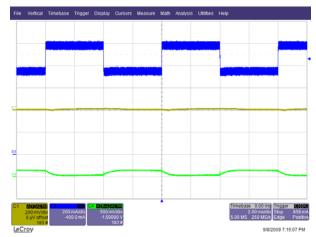


Figure 23 – Transient Response, 265 VAC, 75-100-75% Load Step at 14.5 V Output. Top: Output Current, 200 mA / div. Middle: 5 V Output, 200 mV / div. Bottom: 14.5 V Output. 500 mV, 2 ms / div.

11.5 Output Overvoltage Protection

An output over voltage condition was simulated by shorting LED of the optocoupler (U2), with the output fully loaded. The resultant output oscillograph (below) shows the operation of the primary side OV shutdown via VR2 into the V pin.

The behavior can be changed from non-latching to latching by reducing the value of R6 to 22 Ohms.

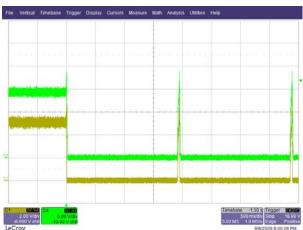


Figure 24 – Output Overvoltage Protection, 90 VAC. Top: 14.5 V Output Voltage, 5 V / div. Bottom: 5 V Output Voltage, 2 V / div., 500 ms / div.

11.6 Output Ripple Measurements

11.6.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in the figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

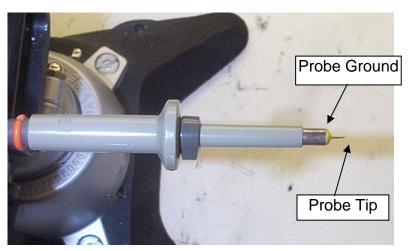
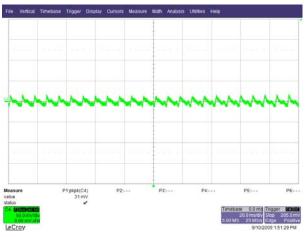
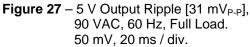
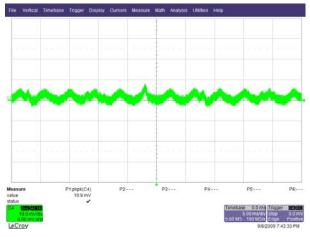
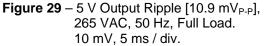


Figure 25 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)




Figure 26 – Oscilloscope Probe with Probe Master (<u>www.probemaster.com</u>) 4987A BNC Adapter. (Modified with wires for ripple measurement, and two parallel decoupling capacitors added)




11.6.2 Measurement Results

Note: Measurements of ripple were made with the V pin of U1 connected to SOURCE pin. This was done to correctly simulate the performance of the final version of U1 which has an optimized V pin characteristic compared to the device used on this board.

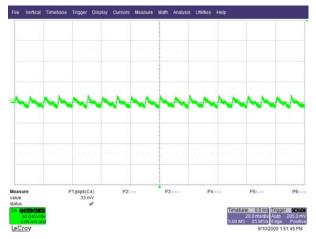


Figure 28 – 5 V Output Ripple [35 mV_{P-P}], 115 VAC, 50 Hz, Full Load. 50 mV, 20 ms / div.

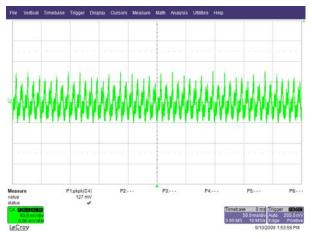


Figure 30 – 14.5 V Output Ripple, [127 mV_{P-P}] 90 VAC, 50 Hz, Full Load. 50 mV, 50 ms / div.

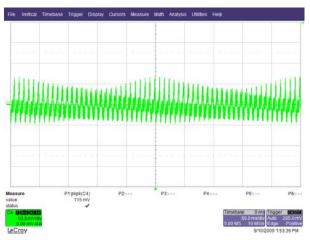


Figure 31 - 14.5 V Output Ripple, [115 mV_{P-P}] 115 VAC, 60 Hz, Full Load. 50 mV, 50 ms / div

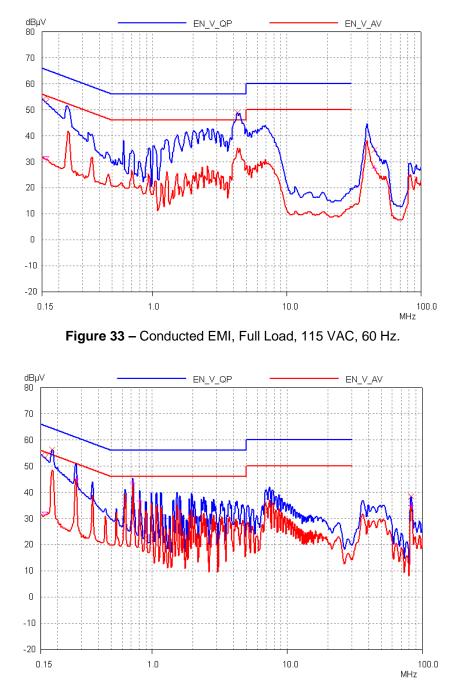



Figure 32 – 14.5 V Output Ripple, [26.9 mV_{P-P}] 265 VAC, 50 Hz, Full Load. 20 mV, 5 ms / div.

12 Conducted EMI

Conducted EMI was measured with the board mounted above a grounded metal plate, both with the output return floating and connected to earth ground. The results below represent worst case results..

13 Revision History

Date	Author	Revision	Description & changes	Reviewed
08-Jan-10	JY	1.0	First Release	ME, PV

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. Copyright 2010 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 **Customer Service:** Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: chinasales@powerint.com

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, **Electronics Science and Technology Building** 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: chinasales@powerint.com

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 e-mail: eurosales @powerint.com

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales @powerint.com

ITALY

Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: eurosales @powerint.com

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales @powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@powerint.com

SINGAPORE

51 Newton Road. #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales @powerint.com

UNITED KINGDOM

1st Floor, St. James's House Fast Street. Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: eurosales@powerint.com

APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

